Blog of Veikko M.O.T. Nyfors, Hybrid Quantum ICT consultant

Quantum Mechanics demystified, a try


Project maintained by veikkonyfors Hosted on GitHub Pages — Theme by mattgraham


Subatomic particles

Overview

Elementary Fermion Quark Up  
Down  
Charm  
Strange  
Top  
Bottom  
Lepton Charged Electron ($e^-$)
Positron ($e^+$)
Muon ($\mu^-$)
Antimuon ($\mu^+$)
Tau ($\tau^-$)
Antitau ($\tau^+$)
Neutral Electronneutrino ($\nu_e$)
Electron Antineutrino ($\bar{\nu}_e$)
Muonneutrino ($\nu_\mu$)
Muon Antineutrino ($\bar{\nu}_\mu$)
Tauneutrino ($\nu_\tau$)
Tau Antineutrino ($\bar{\nu}_\tau$)
Boson Gauge Photon  
Gluon  
W Boson  
Z Boson  
Scalar Higgs  
Composite Hadron Baryon Proton  
Neutron  
Meson Pion  
Rho  

Quarks

  Up Charm Top
charge +$\frac{2e}{3}$ +$\frac{2e}{3}$ +$\frac{2e}{3}$
spin $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
mass $4.2\frac{GeV}{c^2}$ $1.27 \frac{GeV}{c^2}$ $173.1 \frac{MeV}{c^2}$
  Down Strange Bottom
charge -$\frac{e}{3}$ -$\frac{e}{3}$ -$\frac{e}{3}$
spin $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
mass $4.8 \frac{MeV}{c^2}$ $96\frac{MeV}{c^2}$ $4.2\frac{GeV}{c^2}$

Leptons

  Electron Positron Muon
Charge $-e$ $+e$ $-e$
Spin $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
Mass $0.511 \frac{MeV}{c^2}$ $0.511 \frac{MeV}{c^2}$ $105.7 \frac{MeV}{c^2}$

Baryons

  Proton Neutron  
Charge +$e$ 0  
Spin $\frac{1}{2}$ $\frac{1}{2}$  
Mass $938 \frac{MeV}{c^2}$ $0.5 \frac{MeV}{c^2}$  
Quarks UUD DDU  

Mesons

  Pion Rho
  $\pi^+, \pi^- \hspace{1em} or \hspace{1em} \pi^0$ $\rho^+, \rho^- \hspace{1em} or \hspace{1em} \rho^0$

Vocalbulary

Color charge

Red, green or blue. Relates to strong nuclear force, dealt with in QCD.

Color quantum state is needed, as some hadrons, e.g. $\Delta^{++}$, consist of quarks with some incompatible quantum states otherwise

Electronvolt

Unit of energy required to have an electron move through a voltage difference of 1V in an electric field. $1eV=1.602\cdot 10^{-19}J \hspace{1em}(\frac{kgm^2}{s^2})$

QCD

Quantum chromodynamics, describes Strong Nuclear Force.
Red, green and blue colors add up to neutral.
All quarks in a hadron need to have different color, resulting to a colorless hadron.
E.g. a proton has UUD quarks, with each having a different color.
Two of these quarks at a time, but continuously, interchange their colors by exchanging a gluon.
Gluon becomes the force carrying particles between these quarks, mediating the strong nuclear force.